Pseudo-Supersymmetric Quantum Mechanics and Isospectral Pseudo-Hermitian Hamiltonians

نویسنده

  • Ali Mostafazadeh
چکیده

We examine the properties and consequences of pseudo-supersymmetry for quantum systems admitting a pseudo-Hermitian Hamiltonian. We explore the Witten index of pseudo-supersymmetry and show that every pair of diagonalizable (not necessarily Hermitian) Hamiltonians with discrete spectra and real or complex-conjugate pairs of eigenvalues are isospectral and have identical degeneracy structure except perhaps for the zero eigenvalue if and only if they are pseudo-supersymmetric partners. This implies that pseudo-supersymmetry is the basic framework for generating non-Hermitian PT -symmetric and non-PT -symmetric Hamiltonians with a real spectrum via a Darboux transformation, and shows that every diagonalizable Hamiltonian H with a discrete spectrum and real or complex-conjugate pairs of eigenvalues may be factored as H = LL where L is a linear operator with pseudo-adjoint L. In particular, this factorization applies to PT -symmetric and Hermitian Hamiltonians. The nondegenerate two-level systems provide a class of Hamiltonians that are pseudo-Hermitian. We demonstrate the implications of our general results for this class in some detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-Hermiticity versus PT Symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian

We introduce the notion of pseudo-Hermiticity and show that every Hamiltonian with a real spectrum is pseudo-Hermitian. We point out that all the PT -symmetric non-Hermitian Hamiltonians studied in the literature belong to the class of pseudo-Hermitian Hamiltonians, and argue that the basic structure responsible for the particular spectral properties of these Hamiltonians is their pseudo-Hermit...

متن کامل

Pseudo-Hermiticity versus PT Symmetry: The structure responsible for the reality of the spectrum of a non-Hermitian Hamiltonian

We introduce the notion of pseudo-Hermiticity and show that every Hamiltonian with a real spectrum is pseudo-Hermitian. We point out that all the PT -symmetric non-Hermitian Hamiltonians studied in the literature are pseudo-Hermitian and argue that the structure responsible for the reality of the spectrum of these Hamiltonian is their pseudo-Hermiticity not PT -symmetry. We explore the basic pr...

متن کامل

Pseudo supersymmetric Partners for the Generalized Swanson Model

New non Hermitian Hamiltonians are generated, as isospectral partners of the generalized Swanson model, viz., H− = A†A + αA2 + βA† 2, where α , β are real constants, with α 6= β, and A† and A are generalized creation and annihilation operators. It is shown that the initial Hamiltonian H−, and its partner H+, are related by pseudo supersymmetry, and they share all the eigen energies except for t...

متن کامل

Non-Hermitian von Roos Hamiltonian’s η-weak-pseudo-Hermiticity and exact solvability

A complexified von Roos Hamiltonian is considered and a Hermitian first-order intertwining differential operator is used to obtain the related position dependent mass η-weak-pseudo-Hermitian Hamiltonians. Two ”user -friendly” reference-target maps are introduced to serve for exactsolvability of some non-Hermitian η-weak-pseudo-Hermitian position dependent mass Hamiltonians. A non-Hermitian PT -...

متن کامل

New Exactly Solvable Isospectral Partners for PT Symmetric Potentials

We examine in detail the possibilty of applying Darboux transformation to non Hermitian hamiltonians. In particular we propose a simple method of constructing exactly solvable PT symmetric potentials by applying Darboux transformation to higher states of an exactly solvable PT symmetric potential. It is shown that the resulting hamiltonian and the original one are pseudo supersymmetric partners...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002